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Traditionally, vector-based semantic space models use word co-occurrence counts from large cor-
pora to represent lexical meaning. In this article we present a novel framework for constructing
semantic spaces that take syntactic relations into account. We introduce a formalization for
this class of models which allows linguistic knowledge to guide the construction process. We
evaluate our framework on a range of tasks relevant for cognitive science and natural language
processing: semantic priming, synonymy detection and word sense disambiguation. In all cases,
our framework obtains results that are comparable or superior to the state of the art.

1. Introduction

Vector space models of word co-occurrence have proved a useful framework for rep-
resenting lexical meaning in a variety of natural language processing (NLP) tasks such
as word sense discrimination (Schütze 1998) and ranking (McCarthy et al. 2004), text
segmentation (Choi, Wiemer-Hastings, and Moore 2001), contextual spelling correc-
tion (Jones and Martin 1997), automatic thesaurus extraction (Grefenstette 1994; Lin
1998a), and notably information retrieval (Salton, Wang, and Yang 1975). These models
have also been popular in cognitive science and figure prominently in several studies
simulating human behavior. Examples include similarity judgments (McDonald 2000),
semantic priming (Lund and Burgess 1996; Landauer and Dumais 1997; Lowe and
McDonald 2000; McDonald and Brew 2004) and text comprehension (Landauer and
Dumais 1997; Foltz, Kintsch, and Landauer 1998).

The popularity of vector-based models in both fields lies in their ability to repre-
sent word meaning simply by using distributional statistics. The central assumption
here is that the context surrounding a given word provides important information
about its meaning (Harris 1968). The semantic properties of words are captured in a
multi-dimensional space by vectors that are constructed from large bodies of text by
observing the distributional patterns of co-occurrence with their neighboring words.
Co-occurrence information is typically collected in a frequency matrix, where each row
corresponds to a unique word, commonly referred to as “target word”, and each column
represents a given linguistic context. The semantic similarity between any two words
can then be quantified directly using a distance measure such as cosine or Euclidean
distance.
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Contexts are defined as a small number of words surrounding the target word
(Lund and Burgess 1996; Lowe and McDonald 2000) or as entire paragraphs, even
documents (Salton, Wang, and Yang 1975; Landauer and Dumais 1997). Latent Semantic
Analysis (LSA, Landauer and Dumais (1997)) is an example a document-based vector
space model that is commonly used in information retrieval and cognitive science. Each
target word t is represented by a k element vector of paragraphs p1...k and the value
of each vector element is a function of the number of times t occurs in pi. In contrast,
the Hyperspace Analogue to Language model (HAL, Lund and Burgess (1996)) creates
a word-based semantic space: each target word t is represented by a k element vector,
whose dimensions correspond to context words c1...k. The value of each vector element
is a function of the number of times each ci occurs within a window of size n before or
after t in a large corpus.

In their simplest incarnation, semantic space models treat context as a set of un-
ordered words, without even taking parts of speech into account (e.g., to drink and
a drink are represented by a single vector). In fact, with the exception of function
words (e.g., the, down), which are often removed, it is often assumed that all context
words within a certain distance from the target word are semantically relevant. Since no
linguistic knowledge is taken into account, the construction of semantic space models is
straightforward and language-independent – all that is needed is a segmented corpus
of written or spoken text.

However, the assumption that contextual information contributes indiscriminately
to a word’s meaning is clearly a simplification. There is ample evidence demonstrating
that syntactic relations across and within sentences are crucial for sentence and dis-
course processing (Fodor 1995; Miltsakaki 2003; Neville et al. 1991; West and Stanovich
1986) and modulate cognitive behavior in sentence priming tasks (Morris 1994). Fur-
thermore, much research in lexical semantics hypothesizes that the behavior of words,
particularly with respect to the expression and interpretation of their arguments, is to a
large extent determined by their meaning (Talmy 1985; Jackendoff 1983; Goldberg 1995;
Levin 1993; Pinker 1989; Green 1974; Gropen et al. 1989; Fillmore 1965).

It is therefore not surprising that there have been efforts to enrich vector-based
models with morpho-syntactic information. Extensions range from part of speech tag-
ging (Widdows 2003; Kanejiya, Kumar, and Prasad 2003) to shallow syntactic analy-
sis (Grefenstette 1994; Curran and Moens 2002; Lee 1999) and full-blown parsing (Lin
1998a). In these semantic space models, contexts are defined over words bearing a
syntactic relationship to the target words of interest. This makes semantic spaces more
flexible, different types of contexts can be selected, words do not have to co-occur within
a small, fixed word window, and word order or argument structure differences can be
naturally mirrored in the semantic space.

This article proposes a general framework for semantic space models which concep-
tualizes context in terms of syntactic relations. We introduce an algorithm for construct-
ing semantic space models from texts annotated with syntactic information (specifically
dependency relations) and illustrate how different model classes can be derived from
this linguistically rich representation. Our guiding hypothesis is that syntactic structure
in general and argument structure in particular is a close reflection of lexical mean-
ing (Levin 1993). We thus model meaning by quantifying the degree to which words
are attested in similar syntactic environments. The expressive power of our framework
stems from three novel parameters which guide model construction. The first parameter
determines which types of syntactic structures contribute towards the representation of
lexical meaning. The second parameter allows us to weigh the relative importance of
different syntactic relations. Finally, the third parameter determines how the semantic
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space is actually represented, for instance as co-occurrences of words with other words,
words with parts of speech, or words with argument relations (e.g., subject, object).

We evaluate our framework on tasks relevant for cognitive science and NLP. We
start by simulating semantic priming, a phenomenon that has received much atten-
tion in computational psycholinguistics and is typically modeled using word-based
semantic spaces (Landauer and Dumais 1997; McDonald and Brew 2004). We next
consider the problem of recognizing synonyms by selecting an appropriate synonym
for a target word from a set of semantically related candidate words. Specifically, we
evaluate the performance of our model on synonym questions from the Test of English as
a Foreign Language (TOEFL). These are routinely used as a testbed for assessing how well
vector-based models capture lexical knowledge (Landauer and Dumais 1997; Turney
2001; Sahlgren 2006). Our final experiment concentrates on unsupervised word sense
disambiguation (WSD), thereby exploring the potential of the proposed framework for
NLP applications requiring large scale semantic processing. We automatically infer pre-
dominant senses in untagged text by incorporating our syntax-based semantic spaces
into the modeling paradigm proposed by McCarthy et al. (2004). In all cases, we show
that our framework consistently outperforms word-based models yielding results that
are comparable or superior to state of the art.

Our contributions are threefold: a novel framework for semantic spaces that in-
corporates syntactic information in the form of dependency relations and generalizes
previous syntax-based vector-based models; an application of this framework to a wide
range of tasks relevant to cognitive modeling and NLP; and an empirical comparison of
our dependency-based models against state-of-the-art word-based models.

In Section 2, we give a brief overview of existing word-based and syntax-based
models. In Section 3, we present our modeling framework and relate it to previous work.
Section 4 discusses the parameter settings for our experiments. Section 5 details our
priming experiment, Section 6 presents our study on the TOEFL synonymy task, and
Section 7 describes our sense ranking experiment. Discussion of our results and future
work concludes the article (Section 8).

2. Overview of Semantic Space Models

2.1 Word-based and Syntax-based Models

To facilitate comparisons with our framework, we begin with a brief overview of exist-
ing semantic space models. We describe traditional word-based co-occurrence models
as exemplified in Lowe (2001), Lowe and McDonald (2000), McDonald (2000), and Levy
and Bullinaria (2001) as well as syntax-based models as presented in Grefenstette (1994)
and Lin (1998a).

Lowe (2001) defines a semantic space model as a quadruple 〈B, A, S, V〉. B is the set
b1...D of basis elements, the dimensions of the space. B can be a set of words (Lund and
Burgess 1996) or lemmas (McDonald 2000), words with their parts of speech (Widdows
2003) or words with a syntactic relation such as subject or object (Lin 1998a). Usually,
the dimensionality of the matrix is restricted to a relatively small number. A popular
choice are the k most frequent words (minus the stop words) in a corpus, typically
100–2,000 (McDonald 2000; Levy and Bullinaria 2001). A is a lexical association function
applied to the co-occurrence frequency of target word t with basis element b so that each
word is represented by a vector ~v = 〈A( f (t, b1)), A( f (t, b2)), . . . , A( f (t, bn))〉. If A is the
identity function, the raw frequencies are used. Functions such as mutual information
or the log-likelihood ratio are often applied to factor out co-occurrences due to chance.
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lorry might carry sweet apples
lorry 0 1 1 0 0
carry 1 1 0 1 1
sweet 0 1 0 1 1
fruit 0 0 0 0 0

Figure 1
Word-based semantic space (symmetric window size 2)

S is a similarity measure that maps pairs of vectors onto a continuous-valued scale of
contextual similarity. V is an optional transformation that reduces the dimensionality
of the semantic space. Singular value decomposition (SVD; Berry, Dumais, and O’Brien
(1994); Golub and Loan (1989)) is commonly used for this purpose. SVD can be thought
of as a means of inferring latent structure in distributional data, while making sparse
matrices more informative. For the rest of this article, we will ignore V and other
statistical transformations and concentrate primarily on ways of inducing structure
from grammatical and syntactic information.

To illustrate this definition, we construct a word-based semantic space for the
target words T = {lorry, carry, sweet, f ruit}, using as our corpus the following sentence:
A lorry might carry sweet apples. For a word-based space, we might use the basis
elements B = {lorry, might, carry, sweet, apples}, a symmetric window of size 2, and
identity as the association function A. Each target word ti ∈ T will then be represented
by a five-dimensional row vector, and the value of each vector element will record the
number of times each basis element bi ∈ B occurs within a window of two words to
the left and two words to the right of the target word ti. The co-occurrence matrix that
we obtain according to these specifications is shown in Figure 1. A variety of distance
measures can be used to compute the similarity S between two target words (see Lee
(1999) for an overview), the cosine being the most popular:

simcos(~x,~y) =

n
∑

i=1
xiyi

√

n
∑

i=1
x2

i

√

n
∑

i=1
y2

i

(1)

Syntax-based semantic space models (Grefenstette 1994; Lin 1998a) go beyond mere
co-occurrence by capturing syntactic relationships between words such as subject-verb
or modifier-noun, irrespectively of whether they are physically adjacent or not. The
basis elements are generally assumed to be tuples (r, w) where w is a word occurring in
relation type r with a target word t. The relations typically reflect argument structure
(e.g., subject, object, indirect object) or modification (e.g., adjective-noun, noun-noun)
and can be obtained via shallow syntactic processing (Grefenstette 1994; Lee 1999;
Curran and Moens 2002) or full parsing (Lin 1998a; Curran and Moens 2002; Curran
2004). The basis elements (r, w) are treated as a single unit and are often called attributes
(Grefenstette 1994; Curran and Moens 2002) or features (Lin 1998a).

Figure 2 shows a syntax-based semantic space in the manner of Grefenstette (1994),
using the basis elements (subj,lorry), (aux,might ), (mod,sweet ), and (obj,apples). The
binary association function A records whether the target word possesses the feature
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(subj,lorry) (aux,might) (mod,sweet) (obj,apples)
lorry
carry x x x
sweet
fruit

Figure 2
Grefenstette’s (1994) semantic space

(subj,lorry) (aux,might) (mod,sweet) (obj,apples)
lorry 0 0 0 0
carry 1 1 0 1
sweet 0 0 0 0
fruit 0 0 0 0

Figure 3
Lin’s (1988a) semantic space

(denoted by x in Figure 2) or not. Since the cells of the matrix do not contain numerical
values, a similarity measure that is appropriate for categorical values must be chosen.
Grefenstette (1994) uses a weighted version of Jaccard’s coefficient, a measure of associ-
ation commonly employed in information retrieval (Salton and McGill 1983). Assuming
Attr(t) is the set of basis elements co-occurring with t, Jaccard’s coefficient is defined
as:

simJacc(t1, t2) =
Attr(t1) ∩ Attr(t2)
Attr(t1) ∪ Attr(t2)

(2)

Lin (1998a) constructs a semantic space similar to Grefenstette (1994) except that the
matrix cells represent the number of times a target word t co-occurs with basis element
(r, w), as shown in Figure 3. He proposes an information theoretic similarity measure
based on the distribution of target words and basis elements:

simlin(t1, t2) =

∑
(r,w)∈T(t1)∩T(t2)

I(t1, r, w) + I(t2, r, w)

∑
(r,w)∈T(t1)

I(t1, r, w) + ∑
(r,w)∈T(t2)

I(t2, r, w)
(3)

where I(t, r, w) is the mutual information between t and r, w and T(t) is the set of basis
elements (r, w) such that I(t, r, w) is positive and:

I(t, r, w) = log P(t, r, w)P(r)
P(w, r)P(t, r) = log P(w|r, t)

P(w|r) (4)

2.2 Discussion

Since syntax-based models capture more linguistic structure than word-based models,
they should at least in theory provide more informative representations of word mean-
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ing. Unfortunately, comparisons between the two types of models have been few and
far between in the literature. Furthermore, the potential of syntax-based models has not
been fully realized since most previous approaches limit themselves to a specific model
class (Grefenstette 1994; Lin 1998a; Curran and Moens 2002; Lin and Pantel 2001). This
section discusses these issues in more detail and sketches how we plan to address them.

Modeling of syntactic context. All existing syntax-based semantic space models we are
aware of incorporate syntactic information in a rather limited fashion. For example,
the construction of the space is either based on all relations (Grefenstette 1994; Lin
1998a) or a fixed subset (Lee 1999), but there is no quantitative distinction between
different relations. Even in cases where many relations are used (Lin 1998a; Lin and
Pantel 2001), only direct relations are taken into account, ignoring potentially important
co-occurrence patterns between, for instance, the subject and the object of a verb, or
between a verb and its non-local argument (e.g., in control structures).

Comparison between model classes. Syntax-based vector space models have been used
in NLP for a variety of lexicon acquisition tasks ranging from thesaurus extraction
(Grefenstette 1994; Lin 1998a) to paraphrase identification (Lin and Pantel 2001) and
collocation discovery (Lin 1999; Bannard, Baldwin, and Lascarides 2003; McCarthy,
Keller, and Carroll 2003). Comparisons between word-based and syntax-based models
on the same task are rare, and the effect of syntactic knowledge has not been rigorously
investigated or quantified. The few studies on this topic reveal an inconclusive picture.
On the one hand, Grefenstette (1994) compared the performance of the two classes of
models on the task of automatic thesaurus extraction and found that a syntactically en-
hanced model gave significantly better results over a simple word co-occurrence model.
A replication of Grefenstette’s (1994) study with a more sophisticated parser (Curran
and Moens 2002) revealed that additional syntactic information yields further improve-
ments. On the other hand, attempts to generate more meaningful indexing terms for
information retrieval (IR) using syntactic analysis (Salton and Smith 1989; Strzalkowski
1999; Henderson et al. 2002) have been largely unsuccessful. Experimental results show
minimal differences in retrieval effectiveness at a substantially greater processing cost
(see Voorhees (1999) for details).

Impact on cognitive modeling. Despite their widespread use in NLP, syntax-based seman-
tic spaces have attracted little attention in cognitive science and computational psy-
cholinguistics. Wiemer-Hastings and Zipitria (2001) construct a semantic space similar
to LSA, but enhanced with part-of-speech tags with the aim of modeling human raters
in an intelligent tutoring context. Their results however show that the tagged LSA space
yields worse performance than a word-based model. Kanejiya, Kumar, and Prasad
(2003) attempt to capture syntactic context in a shallow manner by enhancing target
words with the parts-of-speech of their immediately preceding words. They argue that
this representation can provide useful information for the upcoming target words, as is
often the case in language modeling and left-to-right parsing. They employ a document-
based semantic space which they submitt to SVD and subsequently compare against an
LSA model that contains no syntactic information, again in the context of an intelligent
tutoring system. Their results indicate that the syntactically enhanced model has better
coverage than the LSA model (i.e., it is able to evaluate more student answers), although
it displays a lower correlation with human raters than raw LSA.

In this article, we argue the case for investigating dependency-based semantic space
models in more depth. We provide a general definition these models which incorporates

6



Padó and Lapata Dependency-based Semantic Spaces

Det
Mya

N
Mylorry

Aux
Mymight

V
Mycarry

A
Mysweet

N
Myapples

subj

det

au
x

obj

mod
a [Det,det,N] lorry
lorry [N,subj,V] carry
might [Aux,aux,V] carry
apples [N,obj,V] carry
sweet [A,mod,N] apples

Figure 4
A dependency analysis of the sentence A lorry might carry sweet apples as parse tree (left) and
set of head-relation-modifier triples (right).

a wider range of syntactic relations than previously considered and subsumes existing
syntax-based and word-based models. In order to demonstrate the scope of our frame-
work, we evaluate our models on tasks popular in both cognitive science and NLP.
Furthermore, in all cases we report comparisons against state of the art word-based
models and show that the additional processing cost incurred by syntax-based models
is worth-while.

3. A General Framework for Semantic Space Models

Once we move away from words as the basic context unit, the issue of representa-
tion of syntactic information becomes pertinent. An ideal syntactic formalism should
abstract over surface word order, mirror semantic relationships as closely as possible,
and incorporate word-based information in addition to syntactic analysis. It should be
also applicable to different languages. These requirements point towards dependency
grammar, which can be considered as an intermediate layer between surface syntax and
semantics. More formally, dependency relations are asymmetric binary relationships
between a head and a modifier (Tesnière 1959). The structure of a sentence is analyzed
as a directed graph whose nodes correspond to words. The graph’s edges correspond
to dependency relationships and each edge is labeled with a specific relationship type
(e.g., subject, object).

The dependency analysis for the sentence A lorry might carry sweet apples is given
in Figure 4. On the left side, the sentence is represented as a graph. The sentence head
is the main verb carry which is modified by its subject lorry, its object apples and the
auxiliary might. The subject and object are modified respectively by a determiner (a)
and an adjective (sweet ). On the right side of Figure 4, an adjacency matrix notation is
used. Edges in the graph are represented as triples of a dependent word (e.g., lorry),
a dependency label (e.g. N:subj:V), and a head word (e.g., carry). The dependency
label consists of the part of speech of the modifier (capitalized, e.g., N) , the dependency
relation itself (in lower case, e.g., subj), and the part of speech of the head (also
capitalized, e.g., V).

It is combinations of dependencies like the ones in Figure 4 that will form the
context over which the semantic space will be constructed. We base our discussion
and experiments on the broad-coverage dependency parser MINIPAR, version 0.5 (Lin

7



Computational Linguistics Volume xx, Number xx

Table 1
Summary of notation

b ∈ B Basis element
t ∈ T Target word type
W(t) Set of tokens of target type t
M[t][b] ∈ R Cell of semantic space matrix for target word t and

basis element b
π Dependency path (in a given dependency tree)
Π Set of all undirected paths
Πs Set of all undirected paths in sentence s
Πt Set of all undirected paths in a sentence anchored at

word t
start(π), end(π) First and last node of an undirected path
Cat Set of POS categories (for given parser)
R Set of dependency relations (for given parser)
l : Π → (Cat × R × Cat)∗ Edge (sequence) labeling function
cont : T → 2Π Local context selection function (subset of paths)
µ : Π → B Basis element mapping function
v : Π → R Path value function
A : R

4 → R Lexical association function

1998a, 2001). However, there is nothing inherent in our formalization that restricts us
to this particular parser. Any other parser with broadly similar dependency output
(e.g., Briscoe and Carroll (2002)) could serve our purposes.

In the remainder of this section, we first give a non-technical description of our
algorithm for the construction of semantic spaces. Then, we proceed to discuss each con-
struction step (context selection, basis mapping, and quantification of co-occurrences)
in more detail. Finally, we show how our framework subsumes existing models. Table 1
lists the notation we use in the rest of the article.

3.1 The construction algorithm

Our algorithm for creating semantic space models is summarized in Figure 5. Central
in the construction process is the notion of paths, namely sequences of dependency
edges extracted from the dependency parse of a sentence (we define paths formally in
Section 3.2). Consider again the graph in Figure 4. Besides individual edges (i.e., paths
of length 1), it contains several longer paths, such as the path between lorry and sweet
(〈lorry, carry, apples, sweet〉), the path between a and carry (〈a, lorry, carry〉), the path
between lorry and carry (〈lorry, carry〉), etc. The usage of paths allows us to represent
direct and indirect relationships between words and gives rise to three novel parame-
ters:

1. The context selection function cont(t) determines which paths in the
graph contribute towards the representation of target word t. For example
we may choose to consider only paths of length 1, or paths with
length ≥ 3. The function is effectively a syntax-based generalization of the
traditional “window size” parameter.

2. The path value function v assigns weights to paths, thus allowing
linguistic knowledge to influence the construction of the space. For
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1: ∀ basis element b: ∀ target t: initialize matrix cell M[t][b] with 0
2: for every target word t do
3: for every token w in the set W(t) do
4: Compute local context cont(w)
5: for every path π in the set of paths cont(w) do
6: Identify relevant basis element b by computing basis mapping function

b = µ(π)
7: Increment M[t][b] by path value v(π)
8: end for
9: end for

10: end for
11: Apply lexical association function A to each count in M

Figure 5
Algorithm for construction of semantic space

instance, it can be used to discount longer paths, or give more weight to
paths containing subjects and objects as opposed to determiners or
modifiers.

3. The basis mapping function µ creates the dimensions of the semantic
space. Although paths themselves could serve as dimensions, the resulting
co-occurrence matrix would be overly sparse (this is especially true for
lexicalized paths whose number can become unwieldy when parsing a
large corpus). For this reason, the basis elements forming the dimensions
of the space are defined independently from the path construction. The basis
mapping function maps paths onto basis elements by collapsing paths
deemed functionally equivalent. For instance, we may consider paths
carrying the same dependency relations as equivalent, or paths ending in
the same word. We thus disassociate the definition of context entities
(paths) from the dimensions of the final space (basis elements).

As discussed in Section 2, the main difference among variants of semantic space models
lies in the specification of basis elements B. By treating the dependency paths as distinct
from the basis elements, we obtain a general framework for vector-based models which
can be parametrized for different tasks and allows for the construction of spaces with
basis elements consisting of words, syntactic entities, or combinations of both. This
flexibility, in conjunction with the context selection and path value functions, allows
our model to subsume both traditional word-based and syntax-based models (see
Section 3.6 for more discussion).

3.2 Step 1: Building the context

The first step in constructing a semantic space from a large collection of dependency
relations is to define an appropriate syntactic context for the target words of interest.
We define contexts as anchored paths, i.e., paths in a dependency graph that start at
a particular target word t. Our assumption is that the set of paths anchored at t is a
superset of the paths that can contribute relevant distributional information about t.
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Definition 1. The dependency parse p of a sentence s is a directed graph ps = (Vs, Es),
where Es ⊆ Vs × Vs. The nodes v ∈ Vs are labeled with individual words wi. For sim-
plicity, we use nodes and their labels interchangeably, and the set of nodes corresponds
to the words of the sentence: Vs = {w1, . . . , wn}. Each edge e ∈ Es bears a label l : Es →
Cat × R × Cat where Cat belongs to a set of POS tags and R to a set of dependency
relations. We assume that this set is finite and parser-specific1. We write edge labels in
square brackets. [Det,det,N] and [N,subj,V] are examples for labels provided by
MINIPAR (see Figure 4, right hand side).

We are now ready to define paths in our dependency graph, save one important issue:
should we confine ourselves to directed paths or perhaps disregard the direction of the
edges? In a dependency graph, directed paths can only capture the relationship between
a head and its (potentially transitive) dependents (e.g., carry and sweet in Figure 4).
This excludes informative contexts representing for instance the relationship between
the subject and the object of a predicate (e.g., lorry and apples in Figure 4). Our intuition
is therefore that directed paths would limit the context too severely. In the following, we
assume undirected paths:

Definition 2. An (undirected) path π is an ordered tuple of nodes 〈v0, . . . , vn〉 ∈ V∗
s for

some sentence s which meets the following two constraints:

∀ i : (vi−1, vi) ∈ Es ∨ (vi, vi−1) ∈ Es (connectedness)
∀ i ∀ j : i 6= j ⇒ vi 6= vj (cycle-freeness)

In the rest of the article, we use the term path as a shorthand for undirected path.

Definition 3. A path π is anchored at a word t iff start(π) = t. We write Πt ⊆ Πs for the
set of all paths anchored at t in sentence s.

As an example, the set of paths anchored at lorry in Figure 4 is:

{〈lorry, carry〉, 〈lorry, a〉, (two paths of length 1)

〈lorry, carry, apples〉, 〈lorry, carry, might〉, (two paths of length 2)
〈lorry, carry, apples, sweet〉} (one path of length 3)

Definition 4. The context selection function cont : W → 2Πt assigns to a word t a subset of
the paths anchored at t. We call this subset the syntactic context of t.

The context selection function allows direct control over the type of linguistic informa-
tion represented in the semantic space. In traditional vector-based models, the context
selection function does not take any syntactic information into account: all paths π are
selected for which the absolute difference (abs) between the positions (pos) of the anchor

1 For the sake of simplicity, we use R without a subscript to denote the set of dependency relations
provided by MINIPAR. We utilize subscripts to distinguish between general sets (e.g., E for the set of all
conceivable edges) and sentence-specific sets (e.g., Es for the set of edges in the parse tree of sentence s).
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start(π) and the end word end(π) does not exceed the window size k:

cont(t) = {π ∈ Πt | abs(pos(start(π)) − pos(end(π))) ≤ k} (5)

The dependency-based models proposed by Grefenstette (1994) and Lin (1998a) con-
sider minimal syntactic contexts in the form of individual dependency relations, i.e., de-
pendency paths of length 1:

cont(t) = {π ∈ Πt | ||π|| = 1} (6)

The context selection function as defined above permits the elimination of paths from
the semantic space on the basis of linguistic or other information. For example, it can be
argued that subjects and objects convey more semantic information than determiners
or auxiliaries. We can thus limit our context to the set of all anchored paths consisting
exclusively of subject or object dependencies:

cont(t) = {π ∈ Πt | l(π) ∈ {[V, subj, N], [V, obj, N]}∗} (7)

When this context specification function is applied to the dependency graph in Figure 4,
only the edges showed in boxes are retained. The context of lorry is thus reduced
to two paths: 〈lorry, carry〉 (length 1) and 〈lorry, carry, apples〉 (length 2). The paths
〈lorry, a〉, 〈lorry, carry, might〉, and 〈lorry, carry, apples, sweet〉 are omitted since their
label sequences (such as [N,det,Det] for 〈lorry, a〉) are disallowed by (7).

3.3 Step 2: Basis mapping

The second step in the construction of our semantic space model is to specify its
dimensions, the basis elements following Lowe’s (2001) terminology.

Definition 5. The basis mapping function µ : Π → B maps paths onto basis elements.

By dissociating dependency paths and basis elements in this way, we decouple the
observed syntactic context from its representation in the final semantic space. The basis
mapping allows us to exploit underlying relationships among different paths: two paths
which are (in some sense) equivalent can be mapped onto the same basis element. The
function effectively introduces a partitioning of paths into equivalence classes “labeled”
by basis elements, thus offering more flexibility in defining the basis elements of the
semantic space.

Traditional co-occurrence models use a word-based basis mapping. This means that all
paths ending at word w are mapped onto the basis element w, resulting in a semantic
space with context words as basis elements (recall that all paths in the local context start
at the target word):

µ(π) = end(π) (8)

A word-based mapping is also possible when paths are defined over dependency
graphs. As an example consider the paths anchored at lorry in Figure 4. Using (8), these
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paths are mapped to the following basis elements:

〈lorry, carry〉 carry
〈lorry, a〉 a

〈lorry, carry, apples〉 apples
〈lorry, carry, might〉 might

〈lorry, carry, apples, sweet〉 sweet

A different mapping is used in Grefenstette (1994) and Lin (1998a) who consider only
paths of length 1. In their case, paths are mapped onto pairs representing a dependency
relation r and the end word w (see the discussion in Section 2):

µ(π) = (r, end(π)) where ||π|| = 1 ∧ 〈r〉 = l(π) (9)

Any plausible and computationally feasible function can be used as basis mapping.
However, in this article we restrict ourselves to models which use a word-based basis
mapping. The resulting spaces are similar to traditional word-based spaces – both use
sets of context words – which allows for direct comparisons between our models and
word-based alternatives. Crucially, our models differ from traditional models in the
more general treatment of (syntactic) context: only paths in the syntactic context, and not
surface co-occurrences, contribute towards counts in the matrix. The context selection
function supports inference over classes of basis elements (which in previous models
would have been considered distinct) as well as fine-grained control over the types of
relationships that enter into the space construction.

3.4 Step 3: Quantifying syntactic co-occurrence

The last step in the construction of the dependency-based semantic models is to specify
the relative importance (i.e., value) of different paths:

Definition 6. The path value function v assigns a real number to a path: v : Π → R.

Traditional models do not exploit this possibility, thus giving equal weight to all paths:

vplain(π) = 1 (10)

The path value function provides additional flexibility for incorporating linguistic in-
formation into our framework. Even if two paths are mapped onto the same basis
element (by the basis mapping), the path value function can weigh their respective
contributions differently. For instance, it could discount longer paths which express
indirect relationships between words. An example of such a length-based path value
function is given in (11). It assigns a value of 1 to paths of length 1 and fractions to
longer paths:

vlength(π) =
1

||π||
(11)
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A more linguistically-informed path value function can be defined by taking into ac-
count the obliqueness hierarchy of grammatical relations (Keenan and Comrie 1977).
According to this hierarchy subjects are more salient than objects, which in turn are
more salient than obliques (e.g., prepositional phrases). And obliques are more salient
than genitives. We thus define a linear relation-based weighting scheme that ranks paths
according to their most salient grammatical function, without considering their length:

vgram−rel(π) =































5 if subj ∈ l(π)

4 if obj ∈ l(π)

3 if obl ∈ l(π)

2 if gen ∈ l(π)

1 else

(12)

The path value function assigns a numerical value to each path forming the syn-
tactic context of a token t. We can next define the local co-occurrence frequency between t
and a basis element b as the sum of the path values v(π) for all paths π ∈ cont(t) which
are mapped onto b. Since our semantic space construction algorithm operates over word
types, we sum the local co-occurrence frequencies for all instances of a target word type t
(written as W(t)) to obtain its global co-occurrence frequency. The latter is a measure of the
co-occurrence of t and b over the entire corpus:

Definition 7. The global co-occurrence frequency of a basis element b and a target t is
function f : B × T → R defined by

f (b, t) = ∑
w∈W(t)

∑
π∈cont(w)∧µ(π)=b

v(π)

The global co-occurrence frequency f (b, t) could be used directly as the matrix value
M[b][t]. However, as Lowe (2001) notes, raw counts are likely to give misleading results.
This is due to the non-uniform distribution of words in corpora which will introduce a
frequency bias so that words with similar frequency will be judged more similar than they
actually are. It is therefore advisable to use a lexical association function A to factor out
chance co-occurrences explicitly.

Our definition allows an arbitrary choice of lexical association function (see Man-
ning and Schütze (1999) for an overview). In our experiments, we follow Lowe and
McDonald (2000) in using the well-known log-likelihood ratio G2 (Dunning 1993). We
can visualize the computation using a two-by-two contingency table whose four cells
correspond to four events (Kilgarriff 2001):

t ¬ t
b k l

¬ b m n

The top left cell records the frequency k with which t and b co-occur (i.e., k corresponds
to raw frequency counts). The top right cell l records how many times b is attested with
any word other than t, the bottom left cell m represents the frequency of any word other
than b with t, and the bottom right cell n records the frequency of pairs involving neither
b nor t. The function G2 : R

4 → R is defined as:
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G2(k, l, m, n) = 2(k log k + l log l + m log m + n log n
− (k + l) log(k + l) − (k + m) log(k + m)

− (l + n) log(l + n) − (m + n) log(m + n)

+ (k + l + m + n) log(k + l + m + n))

(13)

A naive implementation of the log-likelihood ratio would keep track of all four events
for each pair (t, b); this strategy would require updating the entire matrix for each path
and would render the construction of the space prohibitively expensive. This can be
avoided by computing only k = f (t, b), the global co-occurrence frequency, and using
the marginal frequencies of paths and targets to estimate l, m and n as follows:

l = ∑
t

f (t, b) − k m = ∑
b

f (t, b) − k n = ∑
b

∑
t

f (t, b) − (k + l + m) (14)

For example, l can be computed as the total value of all paths in the corpus which are
mapped onto b minus the value of those paths which are anchored at t.

3.5 Definition of semantic space

Our extended framework of semantic space models can now be formally specified by
extending Lowe’s (2001) definition from Section 2:

Definition 8. A semantic space is a tuple 〈B, T, M, S, A, cont, µ, v〉. B is the set of ba-
sis elements, T the set of target words, and M is the matrix M = B × T. We write
M[tj][bi] ∈ R for the matrix cell (i, j). A : R

4 → R is the lexical association function,
and S : T × T → R the similarity measure. Our additional parameters are the content
selection function cont : T → 2Π, the basis mapping function µ : Π → B, and the path
value function v : Π → R.

Note that the set of target words T can contain either word types or word tokens. In
the preceding definitions, we have assumed that co-occurrence counts are constructed
over word types, however the framework can be also used to represent word tokens. In
this case, each set of target tokens contains exactly one word (W(t) = {t}), and the outer
summation step in Definition 7 trivially does not apply. We work with type-based spaces
in the rest of this article. The use of tokens may be appropriate for other applications
such as word sense discrimination (Schütze 1998).

We can now construct a semantic space that illustrates our framework. Consider
again the sentence A lorry might carry sweet apples. According to Definition 8, in
order to construct vectors for the target words T = {lorry, might, carry, sweet, f ruit},
we must provide a context selection function, a basis mapping function and a path
value function. The space resulting from a context selection function which considers
exclusively subject and object dependencies (see (7)), a word-based basis mapping
function (see (8)), and a length-based path value function (see (11)), is shown in Figure 6.
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lorry might carry sweet apples
lorry 0 0 1 0 0.5
might 0 0 0 0 0
carry 1 0 0 0 1
sweet 0 0 0 0 0
fruit 0 0 0 0 0

Figure 6
A dependency-based semantic space using context selection function (7), basis mapping
function (8) and path value function (11)

3.6 Discussion

We have proposed a general framework for semantic space models which operates
on dependency relations and allows linguistic knowledge to inform the construction
of the semantic space. The framework is highly flexible: depending on the context
selection and basis mapping functions, semantic spaces can be constructed over words,
words and parts of speech, syntactic relations, or combinations of words and syntactic
relations. This flexibility unavoidably increases the parameter space of our models, since
there is a potentially large number of context selection or path value functions for which
semantic spaces can be constructed.

At the same time, this allows us to subsume existing semantic space models in
our framework, and facilitates comparisons across different kinds of spaces (compare
Figures 1, 3, and 6). Our space is sparser than the word-based space in Figure 1, due to
the choice of a more selective context specification function (see (5) and (7)). However,
this is expected since our main motivation is to distinguish between informative and
uninformative syntactico-semantic relations. Using a minimal context selection func-
tion results in a space that contains indisputably valid semantic relations, excluding
potentially noisy relations like the one between might and sweet. By adding richer
linguistic information to the context selection function, the space can be expanded in
a principled manner. In comparison with previous syntax-based models, which only
use direct dependency relations (see (6)), our dependency-based space additionally
represents indirect semantic relations (e.g., between lorry and apples).

A smaller parameter space could have resulted from collapsing the context selection
and path value functions into one parameter, for example by defining context selection
directly as a function from (anchored) paths to their path values, and thus assigning a
value of zero to all paths π 6∈ cont(t). However, we refrained from doing this for two
reasons, a methodological and a technical one. On the methodological side, we believe
that it makes sense to keep the two concepts of context selection and context weighting
distinct. The separation allows us to experiment with different path value functions
while keeping the set of paths resulting from context selection constant. On the technical
side, the two functions are easier to specify declaratively when kept separately. Also, a
separate context selection function can be used to efficiently isolate relevant context
paths without having to compute the values for all anchored paths.

The context selection function operates over a subset of dependency paths that are
anchored, cycle-free and connected. These three preconditions on paths are meant to
reflect linguistic properties of reasonable syntactic contexts while at the same time they
guarantee the efficient construction of the semantic space. Anchoredness ensures that
all paths are semantically connected to the target; this also means that the search space
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can be limited to paths starting at the target word. Cycle-freeness and connectedness
exclude linguistically meaningless paths such as paths of infinite length (cycles) or paths
consisting of several unconnected fragments. These properties guarantee that context
paths can be created incrementally, and that construction terminates.

3.7 Runtime and Implementation

Our implementation uses path templates to encode the context selection function (see
Appendix A for more details). The runtime of the semantic space construction algorithm
presented in Section 3 is O(maxg · |cont| · t) where maxg is the maximal degree of a
node in the grammar, |cont| the number of path templates used for context selection,
and t the number of target tokens in the corpus. This assumes that µ(π) and v(π) can
be computed in constant time, which is warranted in practice since most linguistically
interesting paths will be of limited length (in our study, all paths have a length of at most
four). The linear runtime in the size of the corpus provides a theoretical guarantee that
the method is applicable to large corpora such as the British National Corpus (BNC).

A Java implementation of the framework presented in this article is available
under the GPL from http://www.coli.uni-saarland.de/~pado/dv/dv.html.
The system can create dependency spaces from the output of MINIPAR (Lin 1998b, 2001).
We also provide an interface for integrating other parsers. The distribution includes a
set of prespecified parameter settings, namely the word-based basis mapping function,
and the path value and context selection functions used in our experiments.

4. Experimental Setup

In this section, we describe the corpus and parser chosen for our experiments. We also
discuss our parameter and model choice procedure, and introduce the baseline word-
based model which we use for comparison with our approach. Our experiments are
next presented in Sections 5–7.

4.1 Corpus and Parser

All our experiments were conducted on the British National Corpus (BNC), a 100
million word collection of samples of written and spoken English (Burnard 1995). The
corpus represents a wide range of British English including samples from newspapers,
magazines, books (both academic and fiction), letters, essays as well as spontaneous
conversations, business or government meetings, radio shows, and phone-ins. The BNC
has been used extensively in building vector space models for many tasks relevant
for cognitive science (Patel, Bullinaria, and Levy 1998; McDonald 2000; McDonald and
Brew 2004) and NLP (McCarthy et al. 2004; Weeds 2003; Widdows 2003).

In order to construct dependency spaces, the BNC was parsed with MINIPAR,
version 0.5 (Lin 1998b, 2001), a wide-coverage dependency parser. MINIPAR employs a
manually constructed grammar and a lexicon derived from WordNet with the addition
of proper names (130,000 entries in total). Lexicon entries contain part-of-speech and
subcategorization information. The grammar is represented as a network of 35 nodes
(i.e., grammatical categories) and 59 edges (i.e., types of dependency relationships).
MINIPAR uses a distributed chart parsing algorithm. Grammar rules are implemented
as constraints associated with the nodes and edges. When evaluated on the SUSANNE
corpus (Sampson 1995), the parser achieved a precision of 89% and a recall of 79% in
identifying labeled dependencies (Lin 1998b).

16



Padó and Lapata Dependency-based Semantic Spaces

4.2 Model Selection

The construction of semantic space models involves a large number of parameters:
the dimensions of the space, the size and type of the employed context, the choice of
similarity function. A number of studies (Patel, Bullinaria, and Levy 1998; Levy and
Bullinaria 2001; McDonald 2000) have explored the parameter space for word-based
models in detail, using evaluation benchmarks such as human similarity judgments or
synonymy choice tests. The motivation behind such studies is to identify parameters
or parameter classes that yield consistently good performance across tasks. To avoid
overfitting, exploration of the parameter space is typically performed on a development
data set different from the test data (McDonald 2000).

The benchmark dataset collected by Rubenstein and Goodenough (1965) is rou-
tinely used in NLP and cognitive science for development purposes, e.g., for evaluating
automatic measures of semantic similarity (Budanitsky and Hirst 2001; Resnik 1995;
Banerjee and Pedersen 2003) or for exploring the parameter space of vector space
models (McDonald 2000). It consists of 65 noun-pairs ranging from highly synonymous
(gem-jewel ) to semantically unrelated (noon-string). For each pair, a similarity judg-
ment (on a scale of 0 to 4) was elicited from human subjects. The average rating for each
pair represents an estimate of the perceived similarity of the two words. Correlation
analysis is often used to examine the degree of linear relationship between the human
ratings and the corresponding automatically derived similarity values.

Following previous work, we explored the parameter space of our dependency
models on the Rubenstein and Goodenough (1965) dataset. The best performing model
was then used in all our subsequent experiments. We expect a dependency model
optimized on the semantic similarity task to perform well across other related lexical
tasks, which incorporate semantic similarity either directly or indirectly. This is true
for all tasks reported in this article, namely priming (Experiment 1), inferring whether
two words are synonyms (Experiment 2), and acquiring predominant word senses
(Experiment 3). Some performance gains could be expected, if parameter optimization
took place separately for each task. However, such a strategy would unavoidably lead to
overfitting, especially since our datasets are generally small (see Experiments 1 and 2).

We next detail how parameters were instantiated in our dependency models with
an emphasis on the influence of the context selection and path value functions.

Parameters. Dependency contexts were defined over a set of 14 dependency relations
each of which occurred more than 500,000 times in the BNC and which in total ac-
counted for about 76 million of the 88 million dependency relations found in the
corpus. These relations are: amod (adjective modifier), comp1 (first complement), conj
(coordination), fc (finite complement), gen (genitive noun modifier), i (the relationship
between a main clause and a complement clause), lex-mod (lexical modifier), mod
(modifier), nn (noun-noun modifier), obj (object of a verb), pcomp-n (nominal com-
plement of prepositions), rel (relative clause), s (surface subject), and subj (subject
of a verb). From these, we constructed three context selection functions (fully described
in appendix A), which we implemented as parser-specific templates (one template per
non-lexical dependency path):

r minimum contexts contain paths of length 1 (27 templates; in Figure 4
sweet and carry are the minimum context for apples). This definition of
syntactic context considers only direct relations and corresponds to local
verbal predicate-argument structure.
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r medium contexts add to minimum contexts dependency paths which
model the internal structure of noun phrases (length ≤ 3; 59 templates). In
particular, the medium context covers phenomena such as coordination,
genitive constructions, noun compounds, and different kinds of
modification.

r maximum contexts combine all templates defined over the 14 dependency
relations described above into a rich context representation (length ≤ 4;
123 templates).

The context specification functions were combined with the three path value functions
introduced in Section 3:

r plain (vplain, see (10))) assigns the same value (namely 1) to every path. It
is the simplest path value function and assumes that all paths are equally
important.

r length (vlength, see (11)) implements a length-based weighting scheme: it
assigns each path a value inversely proportional to its length, thus giving
more weight to shorter paths corresponding to more direct relationships.

r gram-rel (voblique, see (12)) uses the obliqueness hierarchy (Keenan and
Comrie 1977) to rank paths according to the salience of their grammatical
relations. Specifically, each path is assigned the value of its most salient
grammatical relation (subjects are more salient than objects, which are
more salient than other noun phrases).

The combination of the three context selection and three path value functions yields
nine model instantiations2. To facilitate comparisons with traditional semantic space
models, we used a word-based basis mapping function (see (8)) and the log-likelihood
score (see (13)) as our lexical association function. We also created semantic spaces
with different dimensions, using the 500, 1,000, and 2,000 most frequent basis elements
obtained from the BNC. Finally, we experimented with a variety of similarity measures:
cosine, Euclidean distance, L1 norm, Jaccard’s coefficient, Kullback-Leibler divergence,
skew divergence, and Lin’s (1998a) measure3.

Results. The effects of different parameters on modeling semantic similarity (using
Rubenstein and Goodenough’s (1965) dataset) are illustrated in Tables 2 and 3. We
report the Pearson Product Moment Correlation (“Pearson’s r”) between human ratings
of similarity and vector-based similarity. Rubenstein and Goodenough report an inter-
subject correlation of r = 0.85 on the rating task. The latter can be considered an upper
bound for what can be expected from computational models. For the sake of brevity, we
only report results with 2,000 basis elements, since we found that models with fewer
dimensions (e.g., 500 and 1,000) generally obtained worse performance. Lin’s (1998a)
similarity measure uniformly outperformed all other measures by a large margin. For

2 Since the minimum context selection only considers paths of length 1, the combinations minimum-plain
and minimum-length are identical.

3 The original specification of Lin’s distance measure (Equation (3)) assumes relation-word pairs as basis
elements. Since we work with a word-based basis mapping, we use a simplified version, where I(t, r, w)

reduces to I(t, w) = log P(t,w)
P(t)P(w)

.
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Table 2
Correlations (Pearson’s r) between elicited similarity and dependency models using the cosine
distance, 2,000 basis elements and the log-likelihood association function
X

X
X

X
X

X
X

X
Context

Path plain length gram-rel
minimum 0.45 0.45 0.43
medium 0.45 0.45 0.44
maximum 0.47 0.46 0.45

Table 3
Correlations (Pearson’s r) between elicited similarity and dependency models using Lin’s
(1998a) similarity measure, 2,000 basis elements and the log-likelihood association function
X

X
X

X
X

X
X

X
Context

Path plain length gram-rel
minimum 0.58 0.58 0.58
medium 0.60 0.62 0.59
maximum 0.56 0.59 0.55

comparison, we also give the results we obtained with the cosine similarity measure
(see Table 2).

As can be seen, the gram-rel path value function performs generally worse than
length or plain. We suspect that this function is, at least in its present form, too selective,
giving a low weight to a large number of possibly informative paths without subjects
or objects. A similar result is reported in Henderson et al. (2002), who find that using
the obliqueness hierarchy to isolate important index terms in an information retrieval
task degrades performance. The use of the less fine-grained length path value function
delivers better results for the medium and maximum context configurations (see Table 3).
Finally, we observe that the medium context yields the best overall performance. Within
the currently explored parameter space, medium appears to strike the best balance:
it includes some dependency paths beyond length one (corresponding to informative
indirect relations), but also avoids very long and infrequent contexts which could
potentially lead to overly sparse representations. In sum, the best dependency-based
model uses the medium content selection and length path value functions, 2,000 basis
elements, and Lin’s (1998a) similarity measure. This model will be used for our subse-
quent experiments without additional parameter tuning. We will refer to this model as
the optimal dependency-based model.

4.3 Baseline Model

Our experiments will compare the optimal dependency model just described against a
state-of-the art word-based vector space model commonly used in the literature. The
latter employs a “bag of words” definition of context (see (5)), uses words as basis
elements and assumes that all words are given equal weight. In order to allow a fair
comparison, we trained the word-based model on the same corpus as the dependency-
based model (the complete BNC) and selected parameters that have been considered
“optimal” in the literature (Patel, Bullinaria, and Levy 1998; McDonald 2000; Lowe
and McDonald 2000). Specifically, we built a word-based model with a symmetric
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10 word window as context and the most frequent 500 content words from the BNC as
dimensions.4 We used log-likelihood as our lexical association function and the cosine
similarity measure5 as distance measure.

5. Experiment 1: Single-word Priming

A large number of modeling studies in psycholinguistics have focused on simulating
semantic priming phenomena (Lowe and McDonald 2000; McDonald 2000; Lund and
Burgess 1996; McDonald and Brew 2004). The semantic priming paradigm provides a
natural test bed for semantic space models, as it concentrates on the semantic similarity
or dissimilarity between words, and it is precisely this type of lexical relations that
vector-based models should capture. If dependency-based models indeed represent
more linguistic knowledge, they should be able to model semantic priming better than
traditional word-based models.

In this experiment, we focus on Hodgson’s (1991) single-word lexical priming study.
In single-word semantic priming, the transient presentation of a prime word like tiger
directly facilitates pronunciation or lexical decision on a target word like lion: responses
are usually faster and more accurate when the prime is semantically related to the
target than when it is unrelated. Hodgson (1991) set out to investigate which types
of lexical relations induce priming. He collected a set of 144 word pairs exemplifying
six different lexical relations: (a) synonymy (words with the same meaning, e.g., value
and worth ), (b) superordination and subordination (one word is an instance of the
kind expressed by the other word, e.g., pain and sensation), (c) category coordination
(words which express two instances of a common superordinate concept, e.g., truck
and train), (d) antonymy (words with opposite meaning, e.g., friend and enemy),
(e) conceptual association (the first word subjects produce in free association given
the other word, e.g., leash and dog), and (f) phrasal association (words which co-
occur in phrases, e.g., private and property). The pairs covered the most prevalent
parts of speech (adjectives, verbs, and nouns), they were selected to be unambiguous
examples of the relation type they instantiate and were matched for frequency. Hogdson
found equivalent priming effects (i.e., reduced reading times) for all six types of lexical
relation, indicating that priming was not restricted to particular types of prime-target
relation.

The priming effects reported in Hodgson (1991) have recently been modeled by
McDonald and Brew (2004) using an incremental vector-based model of contextual facil-
itation. Their ICE model (short for Incremental Construction of Semantic Expectations)
simulates the difference in effort between processing a target word preceded by a related
prime and processing the same target preceded by an unrelated prime. This is achieved
by quantifying the ability of the distributional characteristics of the prime word to
predict the distributional properties of the target. The prime word is represented by
a vector of probabilities which reflects the likely location in semantic space of the
upcoming word. When the target word is observed, the representation is updated using
a Bayesian inference mechanism to reflect the newly arrived information. McDonald
and Brew (2004) use a traditional semantic space that takes only word co-occurrences
into account and is defined over the 500 most frequent words of the spoken portion of

4 Increasing the dimensions of the space to 1,000 and 2,000 degraded performance. Smaller context
windows did not yield performance gains either.

5 We repeated all experiments for the word-based model with Lin’s (1998a) distance measure, obtaining
consistently worse results.
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the BNC. They measure distance in semantic space using relative entropy (also known
as Kullback-Leibler divergence) and successfully model the data by predicting that its
value should be lower for related prime-target pairs than for unrelated prime-target
pairs.

5.1 Method

In this experiment we follow McDonald and Brew’s (2004) methodology in simulating
semantic priming. However, since our primary focus is on the representation of the
semantic space, we do not adopt their incremental model of semantic processing. We
simply model reading time for prime-target pairs by distance in the semantic space,
without making explicit predictions about upcoming words.

From the 143 prime-target pairs listed in Hodgson (1991) (one synonymy pair is
missing in the original dataset), seven pairs containing at least one low-frequency word
(less than 100 occurrences in the BNC) were removed to avoid creating vectors with
unreliable counts.6 We constructed a dependency-based model with the parameters that
yielded best performance on our development set (see Section 4.2) and a baseline word-
based model (see Section 4.3). Each prime-target pair was represented by two vectors
(one corresponding to the prime and one corresponding to the target).

These prime-target pairs form the items in this experiment. The independent vari-
ables (i.e., the variables directly manipulated by Hodgson (1991) in his original experi-
ment) are (1) the type of Lexical Relation (antonyms, synonyms, conceptual associates,
phrasal associates, category coordinates, superordinate-subordinates), and (2) the Prime
(related, unrelated). The dependent variable (i.e., the quantity being measured) is the
distance between the vector space representations of the prime and the target. The
priming effect is simulated by comparing the distances between Related and Unrelated
prime-target pairs. Since the original materials do not provide Unrelated primes, we
emulated the unrelated pairs as described in McDonald and Brew (2004), by using the
average distance of a target to all other primes of the same relation.

We test two hypotheses: first, that our dependency-based model can simulate se-
mantic priming. Failure to do so would indicate that our model is deficient since it
cannot capture basic semantic relatedness, a notion underlying many tasks in cognitive
science and NLP. Second, we predict that the dependency-based model will be better at
simulating priming than a traditional word-based one.

5.2 Results

We carried out a two-way Analysis of Variance (ANOVA) on the simulated priming
data generated by the optimal dependency-based and the baseline word-based model.
The factors were the two independent variables introduced above, namely Lexical
Relation (six levels) and Prime (two levels). A reliable Prime effect was observed for
the dependency-based model (F(1, 129) = 182.46, MSE = 0.93, p < 0.01): the distance
between a target and its Related prime was significantly smaller than between a target
and an Unrelated prime. We also observed a reliable Prime effect for the traditional
word-based model that did not use any syntactic information (F(1, 129) = 106.69,

6 Low frequency words are deemed to produce high variance vectors because the co-occurrence counts
needed to determine M[t][b] will be unreliable (see McDonald (2000) for further evidence). Variance can
be decreased by providing more data or by smoothing; however, we leave this to future work.
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Table 4
Mean distance values for Related and Unrelated prime-target pairs; Prime Effect size
(= Related − Unrelated) for the dependency model and ICE.

Lexical Relation N Related Unrelated Effect Effect
(dependency) (ICE)

Synonymy 23 0.267 0.102 0.165** 0.063
Superordination 21 0.227 0.121 0.106** 0.067
Category Coordination 23 0.256 0.119 0.137** 0.074
Antonymy 24 0.292 0.127 0.165** 0.097
Conceptual Association 23 0.204 0.121 0.083** 0.086
Phrasal Association 22 0.146 0.103 0.043** 0.058

**p < 0.01 (2-tailed)

MSE = 2.92, p < 0.01). There was no main effect of Lexical Relation for either model
(F(5, 129) < 1).

The fact that the analysis of variance has produced a significant F for the two models
only indicates that there are differences between the Related and Unrelated prime-target
means that cannot be attributed to error. Ideally, we would like to compare the two
models, for example, by quantifying the magnitude of the Prime effect. Eta-squared
(η2) is a statistic7 often used to measure the strength of an experimental effect (Howell
2002). It is analogous to r2 in correlation analysis and represents how much of the
overall variability in the dependent variable (in our case distance in semantic space)
can be explained or accounted for by the independent variable (i.e., Prime). The use of
η2 allowed us to perform comparisons between models (the higher the η2, the better the
model). The Prime effect size was greater for the dependency model which obtained an
η2 of 0.332 compared to the word-based model whose η2 was 0.284. In other words, the
dependency model accounted for 33.2% of the variance, whereas the word-based model
accounted for 28.4%.

To establish whether the priming effect observed by the dependency model holds
across all relations, we next conducted separate ANOVAS for each type of Lexical Rela-
tion. The ANOVAS revealed reliable priming effects for all six relations. Table 4 shows the
mean distance values for each relation in the Related and Unrelated condition and the
Prime Effect size for the dependency model. The latter was estimated as the difference
in distance values between related and unrelated prime-target pairs (asterisks indicate
whether the difference is statistically significant, according to a two-tailed paired t-test).
For comparison, we also report the Prime Effect size that McDonald and Brew (2004)
obtained in their simulation.

To summarize, our results indicate that a semantic space model defined over depen-
dency relations simulates direct priming across a wide range of lexical relations. Fur-
thermore, our model obtained a priming effect that is not only reliable but also greater
in magnitude than the one obtained by a traditional word-based model. Although we
used a less sophisticated model than McDonald and Brew (2004), without an update
procedure and an explicit computation of expectations, we obtained priming effects
across all relations. In fact, we consider the two models complementary. McDonald and

7 Eta-squared is defined as η2 =
SSeffect
SStotal

where SSeffect is the variance (sum of squares) created by one
particular effect (Prime in our case) and SStotal is the variance of all observations together.
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Brew’s model could straightforwardly incorporate syntax-based semantic spaces like
the ones defined in this article.

We next examine synonymy, a single lexical relation, in more detail and assess
whether the proposed dependency model can reliably distinguish synonyms from non-
synonyms. This capability may be exploited to automatically generate corpus-based
thesauri (Grefenstette 1994; Lin 1998a; Curran and Moens 2002) or used in applications
that utilize semantic similarity. Examples include contextual spelling correction (Jones
and Martin 1997), summarization (Erkan and Radev 2004; Barzilay 2003) and question
answering (Lin and Pantel 2001).

6. Experiment 2: Detecting Synonymy

The Test of English as a Foreign Language (TOEFL) is commonly used as a benchmark for
comparing the merits of different similarity models . The test is designed to assess non-
native speakers’ knowledge of English. It consists of multiple-choice questions, each
involving a target word embedded in a sentence and four potential synonyms. The task
is to identify the real synonym. An example is shown below where crossroads is the real
synonym for intersection.

You will find the office at the main intersection.
(a) place (b) crossroads (c) roundabout (d) building

Landauer and Dumais (1997) were the first to propose the TOEFL items as a test for
lexical semantic similarity. Their LSA model achieved an accuracy of 64.4% on 80 items,
a performance comparable to the average score attained by non-native speakers taking
the test. Sahlgren (2006) uses Random Indexing, a method comparable to LSA, to
represent the meaning of words and reports a 75.0% accuracy on the same TOEFL
items. It should be noted that both Landauer and Dumais (1997) and Sahlgren (2006)
report results on seen data, i.e., parameters are optimized on the entire dataset until
performance has peaked.

Rather than assuming that similar words tend to occur in similar contexts, Turney
(2001) and Higgins (2004) propose models that capitalize on the collocational nature
of semantically related words. Two words are considered similar if they tend to occur
near each other. Turney (2001) uses pointwise mutual information (PMI) to measure the
similarity between a target word and each of its candidate synonyms. Co-occurrence
frequencies are retrieved from the web using an information retrieval (IR) engine:

SimilarityPMI−IR(w1, w2) =
P(w1, w2)

P(w1)P(w2)
≈

hits(w1 NEAR w2)

hits(w1)hits(w2)
(15)

where P(w1, w2) is estimated by the number of hits (i.e., number of documents) re-
turned by the IR engine (Turney (2001) used Altavista) when submitting a query with
the NEAR operator8. The PMI-IR model obtained an accuracy of 72.5% on the TOEFL
dataset.

8 The NEAR operator constrains the search to documents that contain w1 and w2 within ten words of one
another, in either order.
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Higgins (2004) proposes a modification to (15): he dispenses with the NEAR opera-
tor by concentrating on word pairs that are strictly adjacent:

SimilarityLC−IR(w1, w2) =
min(hits(w1, w2), hits(w2, w1))

hits(w1)hits(w2)
(16)

Note that (16) takes the minimum number of hits for the two possible orders w1, w2
and w2, w1 in an attempt to rule out the effects of collocations and part-of-speech
ambiguities. The LC-IR (local-context information retrieval) model outperformed PMI-
IR, achieving an accuracy of 81.3% on the TOEFL items.

6.1 Method

For this experiment, we used the TOEFL benchmark dataset9 (80 items). We com-
pared our optimal dependency-based model against the baseline word-based model.
We would also like to compare the vector-based models against Turney’s (2001) and
Higgins’ (2004) collocational models. Ideally, such a comparison should take place on
the same corpus. Unfortunately, downloading and parsing a snapshot of the whole web
is outside the scope of the present article. Instead, we assessed the performance of these
models on the BNC, using a search engine which simulated Altavista. Specifically, we
indexed the BNC using Glimpse (Manber and Wu 1994), a fast and flexible indexing and
query system10. Glimpse supports approximate and exact matching, Boolean queries,
wild cards, regular expressions, and many other options.

For the PMI-IR model, we estimated hits(w1 NEAR w2) by retrieving and counting
the number of documents containing w1 and w2 or w2 and w1 in the same sentence. The
target w1 and its candidate synonym w2 did not have to be adjacent, but the number
of the intervening words was bounded by the length of the sentence. The frequencies
hits(w1) and hits(w2) were estimated similarly by counting the number of documents
in which w1 and w2 occurred. Ties were resolved by randomly selecting one of the
candidate synonyms. The BNC proved too small a corpus for the LC-IR model which
relies on w1 and w2 occurring in directly adjacent positions. This is not a problem when
frequencies are obtained from web-scale corpora, but in our case most queries retrieved
no documents at all (96.6% of hits(w1, w2) and 95% of hits(w2, w1) were zero). We thus
report only the performance of the PMI-IR model on the BNC.

The models performed a decision task similar to TOEFL test takers: they had to
decide which one of the four alternatives was synonymous with the target word. For
the vector-based models, we computed the distance between the vector representing
the candidate word and each of the candidate synonyms, and selected the candidate
with the smallest distance. Analogously, the candidate with the largest PMI-IR value
was chosen for Turney’s (2001) model. Accuracy was measured as the percentage of
right decisions the model made. We also report the accuracy of a naive baseline model
which guesses synonyms at random.

In this experiment, we aim to show that the superior performance of the depen-
dency model carries over to a different task and dataset. We are further interested to see
whether linguistic information (represented in our case by dependency paths) makes
up for the vast amounts of data required by the collocational models. We therefore

9 The items were kindly provided to us by Thomas Landauer.
10 The software can be downloaded from http://webglimpse.net/download.php.
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Table 5
Comparison of different models on the TOEFL synonymy task (†: significantly better than
random guessing, ∗: significantly better than word-based vector model)

Model Corpus Accuracy (%)
Random Baseline — 25.0
Word-based Space BNC 61.3†

Dependency Space BNC 73.0†∗

PMI-IR BNC 61.3†

PMI-IR Web 72.5†∗

LC-IR Web 81.3†∗

compare directly previously proposed web-based similarity models with BNC-based
vector space models.

6.2 Results

Our results11 are summarized in Table 5. We used a χ2 test to determine whether the
differences in accuracy are statistically significant. Not surprisingly, all models are sig-
nificantly better than random guessing (p < 0.01). The dependency model significantly
outperforms the word-based model and PMI-IR when the latter uses BNC frequencies
(p < 0.05). PMI-IR performs comparably to our model when using web frequencies.
The web-based LC-IR numerically outperforms the dependency model, however the
difference is not statistically significant on the TOEFL dataset (p < 1). Expectedly, web-
based PMI-IR and LC-IR are significantly better than the word-based vector model and
the BNC-based PMI-IR (p < 0.05).

Our results show that the dependency-based model retains its advantage over the
word-based model on the synonymy detection task. On the BNC, it also outperforms
the collocation-based PMI-IR. Our interpretation is that the conceptually simpler collo-
cation models suffer from data sparseness, while the dependency model can profit from
the additional distributional information it incorporates. It is a matter of future work to
examine whether dependency models can carry over their advantage to larger corpora.

Our following experiment applies the dependency space introduced in this article
to word sense disambiguation (WSD), a task which has received much attention in NLP
and is ultimately important for document understanding.

7. Experiment 3: Sense ranking

The ability to identify the intended reading of a polysemous word (the word sense)
in context is crucial for accomplishing many NLP tasks. Examples include lexicon
acquisition, discourse parsing, or metonymy resolution. Applications such as question
answering or machine translation could also benefit from large scale word sense disam-
biguation (WSD).

Given the importance of WSD for basic NLP tasks and multilingual applications,
a variety of approaches have been proposed for disambiguating word senses. To date,

11 We omit LSA (Landauer and Dumais 1997) and Random indexing (Sahlgren 2006) from our comparison,
since these models were not evaluated on unseen data.
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most accurate WSD systems are supervised and rely on the availability of training data
(see Yarowsky and Florian (2002), Mihalcea and Edmonds (2004) and the references
therein). Although supervised methods typically achieve better performance than their
unsupervised alternatives, their applicability is limited to those words for which sense
labeled data exists, and their accuracy is strongly correlated with the amount of labeled
data available. Furthermore, if the distribution of senses is skewed, as is often the case,
the simple heuristic of choosing the most common or predominant sense in the training
data (henceforth “the first sense heuristic”) delivers results competitive with supervised
approaches based on local context (Hoste et al. 2002).

Obtaining the first sense heuristic via annotation is obviously costly and time
consuming. More importantly, one would expect that a word’s first sense varies across
domains and text genres (the word court in legal documents will most likely mean
“tribunal” rather than “yard”). Therefore, manual annotation must be redone for most
new languages, domains, and sense inventories. McCarthy et al. (2004) show that the
annotation bottleneck can be avoided by inferring the first sense heuristic automatically
from raw text. They argue that, even though the first sense heuristic is not a WSD
method in itself, it can be usefully combined with context-based disambiguation meth-
ods in order to alleviate the data requirements for WSD. Their method builds on the
observation that a word’s distributionally similar neighbors often provide cues about its
senses. In their model, sense ranking is equivalent to quantifying the degree of similarity
between each neighbor and each sense description of a polysemous word. The sense
most similar to the neighbors is the first sense.

McCarthy et al.’s (2004) approach crucially relies on the quality of the set of neigh-
bors to acquire more or less accurate first senses. In this experiment, we examine
whether the dependency-based models discussed in this article can be used for the sense
ranking task, thereby assessing their potential for practical NLP tasks. The aims of our
experiment are twofold: (1) to investigate whether our dependency-based framework
can be used to acquire distributionally similar words that differ in quality from those
obtained with word-based models and (2) to observe their impact on WSD. We first
describe McCarthy et al.’s (2004) sense ranking model, which forms the basis of our
experiments, and then detail our methodology and results.

7.1 The sense ranking model

Let w be a word, N(w) = {n1, n2, . . . , nk} the set of the k most similar words to w, and
S(w) = {ws1, ws2, . . . wsn} the set of senses for w. McCarthy et al.’s (2004) model assigns
each sense wsi a “predominant sense score” PS(wsi) as follows:

PS(wsi) = ∑
nj∈N(w)

simdistr(w, nj) ×
simsem(wsi, nj)

∑
wsi′∈S(w)

simsem(wsi′ , nj)
(17)

where

simsem(wsi, nj) = max
wsx∈S(nj)

simWN(wsi, wsx) (18)

The predominant sense of w is simply the one with the largest PS(wsi), i.e., the sense
that is maximally similar to its neighbors nj ∈ N(w) according to (17) and (18).
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This sense ranking model has four free parameters: (1) the semantic space over
which distributionally similar words are acquired, (2) the measure of distributional sim-
ilarity (simdistr), (3) the number of neighbors taken into account (k), and (4) the measure
of sense similarity (simWN). The PS score combines distributional similarity and sense
similarity, taking into account both lexical knowledge gathered from corpora and the
organization and structure of the lexical resource that provides the sense inventory.
A large number of sense similarity measures have been developed for WordNet and
WordNet-like taxonomies. These vary from simple edge-counting (Rada, Mili, and Bick-
nell 1989) to attempts to factor in peculiarities of the network structure by considering
link direction (Hirst and St-Onge 1998), relative depth (Leacock and Chodorow 1998),
and density (Agirre and Rigau 1996). A number of hybrid approaches have also been
proposed that combine WordNet with corpus statistics (Resnik 1995; Jiang and Conrath
1997).

McCarthy et al. (2004) use their ranking model to automatically infer the first senses
of all nouns attested in SemCor, a subset of the Brown corpus containing 23,346 lemmas
annotated with senses according to WordNet 1.6. They acquire distributionally similar
words from a large collection of dependency relations obtained from the written part
of the BNC (90 million words) using Briscoe and Carroll’s (2002) parser. Their model
considers solely dependency paths of length one (see context selection function (5)),
and is restricted to a small set of dependency relations (verb-subject, verb-object, noun-
noun, and adjective-noun). They employ a basis mapping function that maps paths to
(r, w) tuples (see (9)) and Lin’s information-theoretic similarity measure (see (3)). They
obtained a type-level accuracy of 54% (a random baseline achieved 32%) at recovering
the most prevalent sense (using 50 neighbors and either Lesk’s (1986) or Jiang and
Conrath’s (1997) measures). They also used a token disambiguator that always defaults
to the automatically acquired first sense and obtained a token-level disambiguation
accuracy of 48% for Lesk (50 neighbors) and 46% for Jiang and Conrath (50 neighbors).
Their baseline for this task was 24%.

7.2 Method

We replicated McCarthy et al.’s (2004) study using our optimal dependency-based
model (medium context selection, length path value functions, 2,000 basis elements,
Lin’s (1998a) similarity measure, and the log-likelihood association function) and the
baseline word-based model. We used equation (17) to find the first sense for all poly-
semous nouns in SemCor (according to WordNet 1.6). Following McCarthy et al., we
only considered polysemous nouns attested in SemCor with a frequency > 2, and in
our parsed version of the BNC with a frequency ≥ 10. The total number of nouns after
applying the frequency cutoffs was 2,75012 and the average sense ambiguity was 4.55
(the most ambiguous word had 30 senses, and least ambiguous 2). For each one of the
2,750 nouns, we generated the set of its distributionally similar neighbors from the set
of the nouns in the intersection between the BNC and WordNet (15,656 in total).

We did not experiment in detail with WordNet-based similarity measures or with
the number of distributionally similar neighbors required for the computation of the
prevalence score. McCarthy et al. (2004) undertook a thorough comparison and ob-

12 McCarthy et al. (2004) use 2,595 nouns. The slight variation is due to the different parsers employed in
the two studies. Recall that we obtain dependency relations using MINIPAR (Lin 1998b), whereas
McCarthy et al. employ Briscoe and Carroll’s (2002) parser.
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tained best results with 50 neighbors using Lesk’s (1986) and Jiang and Conrath’s (1997)
measures. They argue that the latter measure is more efficient for large scale WSD and
use it exclusively in all subsequent work (McCarthy et al. 2004; Koeling, McCarthy,
and Carroll 2005). We thus adopted the parameters that McCarthy et al. found to be
optimal, namely 50 neighbors and Jiang and Conrath’s similarity measure, which we
briefly describe below.

Jiang and Conrath’s (1997) measure estimates the similarity between two word
senses by combining taxonomic information with corpus data. It is based on the notion
of information content (IC) of a WordNet synset s. IC is defined as the negative log-
likelihood of s, the probability of encountering s in a given corpus:

IC(s) = − log p(s) (19)

Jiang and Conrath (1997) define a distance measure that combines IC with edge count-
ing by taking into account local density, node depth and link type. They introduce two
parameters, α and β, that control the influence of node depth and density respectively.
Setting α to zero and β to one, their measure simplifies to:

Djcn(s1, s2) = log p(s1) + log p(s2) − 2 × log p(lso(s1, s2)) (20)

where lso(s1, s2) is the lowest super-ordinate (most specific common subsumer) of
synsets (that is, senses) s1 and s2. We used the WordNet Similarity Package (Pedersen,
Patwardhan, and Michelizzi 2004) which provides an implementation of Jiang and
Conrath’s (1997) measure (version 0.06).13 We re-estimated the IC counts from the
BNC, since those provided with the package are derived from the manually annotated
SemCor and would positively bias our results.

We replicated McCarthy et al.’s (2004) procedure for evaluating the acquired pre-
dominant sense against the manually annotated SemCor. We use the following notation
to describe our evaluation measures: W is the set of all word types (|W| = 2, 570) and
Wps is the set of word types with a predominant sense, i.e., with a sense that is more
frequent than the second sense in SemCor (|Wps| = 2, 338). S(w) is the set of WordNet
senses for word type w, and T(w) the set of all tokens of w. Finally, we use pssc(w) and
psr(w) to refer to the predominant sense of word w according to SemCor and the sense
ranking model, respectively, and sensesc(t) to denote the sense annotated in SemCor for
a particular token t.

We first evaluate our models performance on the sense ranking task (Accsr), i.e., on
identifying the predominant sense for a word type, if one exists:

Accsr =
|{w ∈ Wps | pssc(w) = psr(w)}|

|Wps|
(21)

A baseline for the sense ranking task can be easily defined by selecting a sense at
random for each word type from its sense inventory and assuming that this is the first
sense:

Randomsr =
1

|Wps|
∑

w ∈Wps

1
|S(w)|

(22)

13 The package is publicly available from http://www.d.umn.edu/~tpederse/similarity.html.
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Table 6
Results on sense ranking and WSD tasks, using 50 neighbors and the Jiang and Conrath (1995)
distance measure (†: significantly better than random baseline, ∗: significantly better than
word-based model, $: significantly better than McCarthy et al.)

Models Accsr Accwsd
Random Baseline 31.0 25.4
Word-based Space 49.3† 49.9†$

Dependency Space 54.3†∗ 54.3†∗$

McCarthy et al. 54.0†∗ 46.0†

Upper Bound — 67.0

Like McCarthy et al. (2004), we also assessed the word sense disambiguation potential
(Accwsd) of the automatically acquired first senses for each word token. We assigned
the predominant sense (according to the ranking model) to every noun token, without
taking its context into account, and measured the ratio of tokens for which the first sense
given by the ranking model is identical to the SemCor gold standard sense:

Accwsd =

∑
w∈W

|{t ∈ T(w) | psr(w) = sensesc(t)}|

∑
w∈W

|T(w)|
(23)

A baseline disambiguator can be defined by assigning a random sense to each token:

Randomwsd =
1

∑
w∈W

|T(w)| ∑
w∈W

|T(w)|
1

|S(w)|
(24)

7.3 Results

Table 6 shows the results for the optimal dependency-based model, the random base-
line, the baseline word-based model, and McCarthy et al.’s (2004) state of the art model.
As an upper bound, we report WSD accuracy when defaulting to the first (i.e., most
frequent) sense provided by SemCor. All models use 50 nearest neighbors and Jiang and
Conrath’s (1997) WordNet-based semantic similarity measure. As far as distributional
similarity is concerned, our dependency model employs Lin’s (1998a) measure and so
do McCarthy et al., whereas the traditional word co-occurrence model uses cosine.
Our model differs from McCarthy et al. in the context selection, path value and basis
mapping functions (see the discussion below). We used a χ2 test to determine if the
differences in performance are statistically significant. Note that we have a slightly
different set of nouns from McCarthy et al. (2004); this is due to the use of a different
parser and a larger corpus. We work on the assumption that this difference is negligible.
We use a set of diacritics to denote statistical significance, explanations for which are
provided in Table 6.

We first consider the predominant sense acquisition task (Accsr). Table 6 shows
that all models significantly outperform the random baseline (p < 0.01). Furthermore,
both the dependency-based model and McCarthy et al. (2004) significantly outperform
the word-based model. The two dependency models yield comparable performances
(p < 1). For the WSD task, we also observe that all models significantly outperform
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Table 7
Sense ranking and WSD accuracy for the dependency-based model as word frequency and
average sense ambiguity are varied (FBand: frequency band, AvgAmbig: average WordNet sense
ambiguity within frequency band, Types: number of noun types within frequency band)

FBand AvgAmbig Types accsr accwsd
<50 3.29 174 0.53 0.46

50-200 3.60 489 0.54 0.49
200-1,000 4.29 1, 014 0.57 0.54

1,000-5,000 5.65 583 0.51 0.57
5,000+ 8.32 78 0.50 0.51

the random baseline (p < 0.01). Our dependency model significantly outperforms the
word-based model and McCarthy et al. (p < 0.01). The word-based model performs
significantly better than McCarthy et al. (p < 0.01). All models expectedly perform
worse than the upper bound (p < 0.01).

An interesting observation is that our dependency model outperforms McCarthy
et al. (2004) by a large margin (8.3%) on the WSD task, while the two models yield
comparable performances on sense ranking. Also, the word-based model performs
significantly better than McCarthy et al. on WSD, while it is significantly worse than
McCarthy et al. in sense ranking. This indicates that the words for which each model
delivers the first sense correctly are different. Indeed, inspection of the first sense assign-
ments reveals that McCarthy et al. and our dependency model have only 35.7% nouns in
common for which they predict the first sense correctly. McCarthy et al. has 34.8% nouns
in common with the word-based model which in turn has 40.3% nouns in common with
our dependency model.

To follow up on this observation, we investigated how ambiguity and word fre-
quency influence the performance of our ranking model. In theory, an automatically
acquired sense ranker should have a good accuracy on all ambiguous words in order
to do well on WSD. However, in practice the sense ranker’s performance depends
crucially on its ability to correctly predict the first sense for highly frequent and highly
ambiguous words. An additional complicating factor is the sense distribution of the
words in question. For words whose sense distributions are not particularly skewed,
getting the first sense wrong will not be entirely detrimental as long as the WSD method
misclassifies as predominant relatively frequent senses.

Take, for example, the word corner which is attested 61 times in Semcor and has
11 senses according to WordNet 1.6. Among these, sense 1 is found seventeen times,
sense 2 fifteen, sense 3 ten0, and sense 4 nine (all other senses have considerably smaller
frequencies). Now suppose that the sense ranking method wrongly identifies sense 2
as the predominant sense for corner. Using this sense, our WSD system will correctly
disambiguate 24.6% of the instances of corner in Semcor, despite the fact that it will not
receive any credit for identifying the first sense. Note that the right first sense would
yield only slightly better accuracy (i.e., 27.4%).

We grouped all ambiguous noun tokens in SemCor into five frequency bands (fre-
quencies were estimated from the BNC as it constitutes a larger sample of English than
Semcor). Table 7 illustrates our models’ sense ranking and WSD accuracy according to
these bands; we also list the average sense ambiguity and number of word types for each
band. As can be seen, our dependency model obtains consistently good performance on
both tasks, even in the high ambiguity bands (Bands 1,000–5,000 and 5,000+, highlighted
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in Table 7). The obtained accuracies are well above the baseline of choosing a sense at
random (for example, an average ambiguity of 8.3 in the 5000+ band corresponds to
a random baseline of 12% in the sense ranking task). This is not entirely surprising;
frequent words are represented by more reliable vectors. As a result, the acquired
neighbors are of higher quality, which counteracts the increased ambiguity.

The results in Table 7 furthermore reveal that WSD performance exceeds sense
ranking accuracy in high-frequency bands (most notably in Band 1,000-5,000), which
seems counterintuitive. This effect can be explained by taking into account the observed
sense frequencies and the types of errors introduced by our model in these bands. The
distribution of senses in the high-frequency bands tends to be less skewed, at least
according to Semcor (82% of nouns in Band 1,000-5,000 and 65% in Band 5,000+ have a
first sense with frequency <50). Our model’s mistakes are often “near misses”, i.e., the
first and second sense ranks are flipped. Specifically, near misses are observed for 25%
of the noun types in Band 1,000-5,000, and 15% in Band 5,000+. Now, for nouns with
non-skewed sense distributions, disambiguating with the second sense will boost WSD
accuracy even though this is not the case for sense ranking (see the discussion above).

Our results show that semantic space models defined according to the framework
presented in this article can be successfully used for the automatic acquisition of first
senses from raw text. We obtained results similar to McCarthy et al. (2004) on the sense
ranking task and demonstrated that our model performs significantly better on WSD.
Furthermore, it outperformed a word-based semantic space on both tasks. Our model
differs from McCarthy et al. in three important ways: (a) following our terminology,
they use a semantic space with the minimum context selection (paths of length one)
and plain path value (no path weighting) functions, whereas our model employs the
medium content selection and length path value functions; (b) their space is constructed
over a limited set of dependency paths, namely subject, object and adjective/noun
modification relations, whereas our model uses a wider range of relations including
information about tense (for example, whether a complement is finite or not), relativi-
sation, etc. (see Section 4.2 for details); and (c) their basis mapping function maps paths
to tuples whereas we employ a word-based function and restrict the dimensions of the
space to the 2,000 most frequent elements (McCarthy et al. do not employ any cutoffs).
Furthermore, they used a slightly smaller corpus (only the written part of the BNC,
amounting to 90% of the total corpus) and a different parser (Briscoe and Carroll 2002).

Although replicating our study with Briscoe and Carroll’s parser (2002) is outside
of the scope of this article, we should note that the two parsers yield comparable perfor-
mances and employ a similar inventory of dependency relations (see Curran (2004) for
more discussion). We thus suspect that differences in performance cannot be uniquely
attributed to parser performance. We can, however, assess whether the difference is due
to corpus size by examining its effect on the performance of our model. If it is indeed
sensitive to corpus size, we would expect a relatively large drop in performance when
our semantic space is built on smaller corpora. We randomized the order of sentences
in the BNC and constructed semantic spaces on data sets progressively increasing in
size: the first space was constructed from 5% of the BNC, the next from 10% and so
on. We tested each model on the SemCor data (see Section 7.2). Figure 7 shows the
resulting learning curves. When the dependency model is constructed on 5% of the
BNC, it delivers a WSD accuracy of 51% which eventually increases to 54.3% when
the entire corpus is used. This result indicates that the model performs well when
trained on a small corpus and that its good performance cannot be attributed solely
to corpus size. However, it also suggests that a large increase in corpus size is necessary
to obtain substantial improvements with the present sense ranking strategy, which
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Figure 7
Learning curve for the dependency-based model on a randomized version for the BNC: accuracy
of predominant sense acquisition (solid) and WSD (dashed) with varying corpus size

uses distributional similarity as a corrective for taxonomy-based similarity: accuracy
increases by approximately 4% when our corpus size increases by a factor of 20.

We believe that the differences in performance between the two models are largely
due to differences in the basis mapping function. Since McCarthy et al. (2004) use all
available basis elements, their semantic space grows linearly with vocabulary (i.e., cor-
pus) size. Each target word is represented by a set of “features” – relation-word pairs
with a non-zero occurrence frequency – which may vary widely between target words.
In contrast, our model defines a modest number of basis elements (2,000) which are
shared between all target words. The resulting representation is a vector space which is
less sparse and the resulting neighbors capture more succinctly the semantic properties
of words. Additional evidence comes from the performance of the word-based model,
which also uses a word basis mapping function and a fixed number of dimensions (500
words). Although this model does not incorporate syntactic information in any way,
it manages to outperform McCarthy et al. on the WSD task. In sum, we attribute the
superior performance of the vector-based model to two key factors: low dimensionality
(as seen by the comparison to McCarthy et al.) and the incorporation of linguistic
knowledge (as seen by the comparison to the word-based model).

8. General Discussion

In this article, we presented a general framework for the construction of semantic space
models. The framework operates on paths of dependency relations, allowing linguistic
knowledge to guide the construction of semantic spaces. It extends previous work
on traditional word-based semantic space models as well as syntax-based models by
providing a principled way for defining the context and the dimensions of the semantic
space. More specifically, we isolated three important parameters of space construction:
the context selection function, the basis mapping function and the path value function.
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In combination, these three functions determine which paths (e.g., local or distant),
dimensions (e.g., words, parts of speech or word-relation tuples), and dependency
relations (e.g., subjects, objects) contribute towards the construction of a semantic space.

We evaluated our framework on tasks relevant for NLP and cognitive science and
compared it against state of the art models. Experiment 1 revealed that semantic space
models defined over dependency relations adequately simulate semantic priming. Ex-
periments 2 and 3 examined the usefulness of our framework for NLP: we used our
model to detect synonymy relations and to automatically acquire prevalent senses for
polysemous words. In all cases, syntactically enriched models outperformed traditional
word-based models that did not take account of syntax.

Our strategy in the present study was to define a small number of generic param-
eterizations, evaluate the resulting models on a development set, and select a broadly
optimal model for testing on unseen data.Therefore, our models were not specifically
tuned for the tasks at hand and we have only explored a relatively small subset of the
parameter space. Our examination of different parameter combinations in Section 4.2
revealed that medium syntactic contents yield consistently better performance when
combined with a path value function that penalizes longer paths (length ). An important
avenue for future work concerns defining more fine-grained path value functions. Our
results show that a path value function inspired by the obliqueness hierarchy delivers
worse results than the linguistically naive length function. Alternatively, we could de-
fine a function that combines gram-rel with length , or more generally learn a weighting
scheme for paths by optimizing some objective function.

Our experiments concentrated on spaces that used solely a basis mapping function
that maps dependency paths to words. It should also be interesting to experiment
with different types of basis mapping functions. For example, we could experiment
with more coarse-grained functions based on parts-of-speech or more fine-grained ones
such as the relation-word pairs used by McCarthy et al. (2004). We would also like
to observe the impact of singular value decomposition (SVD) on our semantic spaces
along the lines of Kanejiya et al.’s (2003) cognitive modeling work. They use SVD to
reduce the dimensionality of a semantic space that uses (word, part-of-speech) pairs
as basis elements, obtaining better coverage compared with an LSA space constructed
over word co-occurrences. Further studies must examine the effect of parser quality on
the obtained co-occurrences, and the influence of the chosen similarity measure.

We have just scratched the surface of the possibilities for the framework discussed
in this article. The potential applications are many and varied both for cognitive science
and NLP. Our syntactically enriched models retain the simplicity of word co-occurrence
models while allowing for the role of syntactic structure to influence the representation
of the semantic space. The resulting vectors have a higher degree of linguistic plausibil-
ity – it is not mere lexical association that accounts for the meaning of words but rather
their lexical and syntactic dependencies. Arguably, this property holds great promise
for languages less configurational than English. A prediction that we intend to test
in the future is that syntax-based semantic space models should be able to represent
meaning more adequately than traditional word-based models for languages that allow
constituent scrambling (e.g., German) or have free word order (e.g., Czech).

It remains to be seen whether our models can capture the wide range of data that
traditional and LSA-based models have accounted for. Possible future experiments
include mediated priming (Lowe and McDonald 2000) and multiple priming (Mc-
Donald and Brew 2004), intelligent tutoring (Kanejiya, Kumar, and Prasad 2003), and
coherence rating (Foltz, Kintsch, and Landauer 1998). A number of NLP tasks could
also benefit from the framework presented in this article. Examples include word sense
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discrimination (Schütze 1998; Lin 1998a) automatic thesaurus construction (Grefenstette
1994; Curran and Moens 2002), automatic clustering, lexicon acquisition and in general
similarity-based approaches to NLP.
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Appendix A. Context Selection Functions

In what follows we present the context selection functions we used in our experiments.
These are encoded as non-lexicalized path templates and are distributed as part of the
software package that implements our dependency-based semantic space framework
(see Section 3.7 for details). Each context selection function cont is represented by a
set of path templates, Temp(cont). Each path template directly corresponds to a path
label sequence. Path templates are denoted by a comma-separated sequence of one or
more edge labels; each edge label is a colon-separated triple POS1:relation:POS2
(see Definition 1). The semantics of a set of path templates Temp(c) is as follows: for
a target word t and a context selection function c, the context of t consists of all paths
Pit (i.e., all paths anchored at t) so that there is a path template temp ∈ Temp(c) which
matches the label sequence l(πt).

Minimum:

A:amod:V
A:mod:A
A:mod:A
A:mod:N
A:mod:Prep
A:mod:V
A:subj:N
N:conj:N
N:gen:N
N:mod:A
N:mod:Prep
N:nn:N
N:obj:V
N:pcomp-n:Prep
N:subj:A
N:subj:N
N:subj:V
(null):lex-mod:V
Prep:mod:A
Prep:mod:N
Prep:mod:V
Prep:pcomp-n:N
V:amod:A
V:lex-mod:(null)
V:mod:A
V:mod:Prep
V:obj:N
V:subj:N

Medium contains all minimum tem-
plates and:

A:mod:N,N:lex-mod:(null)
A:mod:N,N:nn:N
A:subj:N,N:lex-mod:(null)
A:subj:N,N:nn:N
N:conj:N,N:lex-mod:(null)
N:conj:N,N:nn:N

N:gen:N,N:lex-mod:(null)
N:gen:N,N:nn:N
N:nn:N,N:conj:N
N:nn:N,N:conj:N,N:nn:N
N:nn:N,N:gen:N
N:nn:N,N:gen:N,N:nn:N
N:nn:N,N:mod:A
N:nn:N,N:mod:Pred
N:nn:N,N:obj:V
N:nn:N,N:subj:A
N:nn:N,N:subj:V
(null):lex-mod:N,N:conj:N
(null):lex-mod:N,N:conj:N,

N:lex-mod:(null)
(null):lex-mod:N,N:gen:N
(null):lex-mod:N,N:gen:N,

N:lex-mod:(null)
(null):lex-mod:N,N:mod:A
(null):lex-mod:N,N:mod:Pred
(null):lex-mod:N,N:obj:V
(null):lex-mod:N,N:subj:A
(null):lex-mod:N,N:subj:V
Prep:mod:N,N:lex-mod:(null)
Prep:mod:N,N:nn:N
V:obj:N,N:lex-mod:(null)
V:obj:N,N:nn:N
V:subj:N,N:lex-mod:(null)
V:subj:N,N:nn:N

Maximum contains all medium tem-
plates and:

A:mod:A,A:mod:N,N:lex-mod:(null)
A:mod:A,A:mod:N,N:nn:N
A:mod:Prep,Prep:pcomp-n:N,

N:lex-mod:(null)
N:mod:Prep,Prep:pcomp-n:N,

N:lex-mod:(null)
N:mod:Prep,Prep:pcomp-n:N,

N:nn:N
N:nn:N,N:mod:A,A:mod:A
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N:nn:N,N:mod:Prep,Prep:pcomp-n:N
N:nn:N,N:mod:Prep,Prep:pcomp-n:N,

N:nn:N
N:nn:N,N:obj:V,V:subj:N
N:nn:N,N:obj:V,V:subj:N,N:nn:N
N:nn:N,N:pcomp-n:Prep
N:nn:N,N:pcomp-n:Prep,Prep:mod:N
N:nn:N,N:pcomp-n:Prep,Prep:mod:N,

N:nn:N
N:nn:N,N:subj:V,V:obj:N
N:nn:N,N:subj:V,V:obj:N,N:nn:N
N:nn:N,V:s:C,C:fc:V
N:obj:V,V:subj:N,N:lex-mod:(null)
N:obj:V,V:subj:N,N:nn:N
N:pcomp-n:Prep,Prep:mod:N,

N:lex-mod:(null)
N:pcomp-n:Prep,Prep:mod:N,N:nn:N
N:subj:V,V:obj:N,N:lex-mod:(null)
N:subj:V,V:obj:N,N:nn:N
(null):lex-mod:N,N:mod:A,A:mod:A
(null):lex-mod:N,N:mod:Prep,

Prep:pcomp-n:N
(null):lex-mod:N,N:mod:Prep,

Prep:pcomp-n:N,N:lex-mod:(null)
(null):lex-mod:N,N:obj:V,V:subj:N
(null):lex-mod:N,N:obj:V,

V:subj:N,N:lex-mod:(null)
(null):lex-mod:N,N:pcomp-n:Pred,

Prep:mod:A
(null):lex-mod:N,N:pcomp-n:Prep
(null):lex-mod:N,N:pcomp-n:Prep,

Prep:mod:N
(null):lex-mod:N,N:pcomp-n:Prep,

Prep:mod:N,N:lex-mod:(null)
(null):lex-mod:N,N:pcomp-n:Prep,

Prep:mod:V
(null):lex-mod:N,N:rel:C,C:i:V
(null):lex-mod:N,N:subj:V,V:obj:N
(null):lex-mod:N,N:subj:V,V:obj:N,

N:lex-mod:(null)
(null):lex-mod:N,V:s:C,C:fc:V
Prep:pcomp-n:N,N:lex-mod:(null)
Prep:pcomp-n:N,N:nn:N
V:fc:C,C:s:N,N:lex-mod:(null)
V:fc:C,C:s:N,N:nn:N
V:i:C,C:rel:N,N:lex-mod:(null)
V:mod:Prep,Prep:pcomp-n:N,

N:lex-mod:(null)
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